more auickly."

Name:

Period:

Seat#:

2006 D	 7. Answer the following questions about the structures of ions that contain only sulfur and fluorine. (a) The compounds SF₄ and BF₃ react to form an ionic compound according to the following equation. SF₄ + BF₃ → SF₃BF₄ (i) Draw a complete Lewis structure for the SF₃⁺ cation in SF₃BF₄. (ii) Identify the type of hybridization exhibited by sulfur in the SF₃⁺ cation. (iii) Identify the geometry of the SF₃⁺ cation that is consistent with the Lewis structure drawn in part (a)(i). (iv) Predict whether the F—S—F bond angle in the SF₃⁺ cation is larger than, equal to, or smaller than 109.50°. Justify your answer. (b) The compounds SF₄ and CsF react to form an ionic compound according to the following equation.
	 (b) The compounds SF4 and CSF react to form an form compound according to the following equation. SF4 + CsF → CsSF5 (i) Draw a complete Lewis structure for the SF5⁻ anion in CsSF5. (ii) Identify the type of hybridization exhibited by sulfur in the SF5⁻ anion. (iii) Identify the geometry of the SF5⁻ anion that is consistent with the Lewis structure drawn in part (b)(i). (iv) Identify the oxidation number of sulfur in the compound CsSF5.
2006 D	 6. Answer each of the following in terms of principles of molecular behavior and chemical concepts. (a) The structures for glucose, C₆H₁₂O₆, and cyclohexane, C₆H₁₂, are shown below. (to the right for spacing) Identify the type(s) of intermolecular attractive forces in (i) pure glucose (ii) pure cyclohexane (b) Glucose is soluble in water but cyclohexane is not soluble in water. Explain. (c) Consider the two processes represented below. Process 1: H₂O(l) → H₂O(g) △H° = +44.0 kJ mol⁻¹ Process 2: H₂O(l) → H₂(g) + ¹/₂ O₂(g) △H° = +286 kJ mol⁻¹ (i) For each of the two processes, identify the type(s) of intermolecular or intramolecular attractive forces that must be overcome for the process to occur. (ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation.
	 (d) Consider the four reaction-energy profile diagrams shown below. (i) Identify the two diagrams that could represent a catalyzed and an uncatalyzed reaction pathway for the same reaction. Indicate which of the two diagrams represents the catalyzed reaction pathway for the reaction. (ii) Indicate whether you agree or disagree with the statement in italics. Support your answer with a short explanation. <i>"Adding a Catalyst to a reaction mixture adds energy that causes the reaction to proceed</i>

2005 D

- 7. Use principles of atomic structure, bonding and/or intermolecular forces to respond to each of the following. Your responses <u>must</u> include specific information about <u>all</u> substances referred to in each question.
- (a) At a pressure of 1 atm, the boiling point of NH₃(*l*) is 240 K, whereas the boiling point of NF₃(*l*) is 144 K.
 (i) Identify the intermolecular forces(s) in each substance.
 - (ii) Account for the difference in the boiling points of the substances.
- (b) The melting point of KCl(s) is 776°C, whereas the melting point of NaCl(s) is 801°C.
 - (i) Identify the type of bonding in each substance.
 - (ii) Account for the difference in the melting points of the substances.
- (c) As shown in the table below, the first ionization energies of Si, P, and Cl show a trend.

Element	First Ionization Energy (kJ mol ⁻¹)
Si	786
Р	1012
Cl	1251

- (i) For each of the three elements, identify the quantum level (e.g., n = 1, n = 2, etc.) of the valence electrons in the atom.
- (ii) Explain the reasons for the trend in the first ionization energy.
- (d) A certain element has two stable isotopes. The mass of one of the isotopes is 62.93 amu and the mass of the other isotope is 64.93 amu.
 - (i) Identify the element. Justify your answer.
 - (ii) Which isotope is more abundant? Justify your answer.

2005

6. Answer the following questions that relate to chemical bonding

(a) In the boxes provided, draw the complete Lewis structure (electron-dot diagram) for each of the three molecules represented below.

CF ₄	PF ₅	SF_4	

- (b) On the basis of the Lewis structures drawn above, answer the following questions about the particular molecule indicated.
- (i) What is the F-C-F bond angle in CF_4 ?
- (ii) What is the hybridization of the valence orbitals of P in PF_5 ?
- (iii) What is the geometric shape formed by the atoms in SF_4 ?
- (c) Two Lewis structures can be drawn for the OPF₃ molecule, as shown. Structure 1 Structure 2
 - (i) How many sigma bonds and how many pi bonds are in structure 1?
 - (ii) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.

2004

- 7. Use appropriate chemical principles to account for each of the following observations. In each part, your response <u>must</u> include specific information about <u>both</u> substances.
- (a) At 25° C and 1 atm, F_2 is a gas whereas I₂ is a solid.
- (b) The melting point of NaF is 993° C, whereas the melting point of CsCl is 645° .
- (c) The shape of ICl_4^- ion is square planar, whereas the shape of BF_4^- ion is tetrahedral.
- (d) Ammonia, NH₃, is very soluble in water, whereas phosphine, PH₃, is only moderately soluble in water.